WWW.KNIGI.KONFLIB.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

 
<< HOME
Научная библиотека
CONTACTS

Pages:     || 2 | 3 | 4 |

«1 ЛЕКЦИЯ №24 ФИЗИКА АТОМНОГО ЯДРА Состав атомных ядер, их классификация Э. Резерфорд, исследуя прохождение -частиц с энергией в несколько мегаэлектронвольт через тонкие ...»

-- [ Страница 1 ] --

1

ЛЕКЦИЯ №24

ФИЗИКА АТОМНОГО ЯДРА

Состав атомных ядер, их классификация

Э. Резерфорд, исследуя прохождение -частиц с энергией в несколько

мегаэлектронвольт через тонкие пленки золота, пришел к выводу о том, что атом

состоит из положительно заряженного ядра и сгружающих его электронов. Проанализировав эти опыты, Резерфорд также показал, что атомные ядра имеют размеры около 10-14–10-15 м (линейные размеры атома примерно 10-10 м).

Атомное ядро состоит из элементарных частиц — протонов и нейтронов (протонно-нейтронная модель ядра была предложена российским физиком Д. Д.

Иваненко, а впоследствии развита В. Гейзенбергом).

Протон (р) имеет положительный заряд, равный заряду электрона, и массу покоя mp= 1,672610-27 кг 1836 тe, где тe — масса электрона. Нейтрон (n) — нейтральная частица с массой покоя mn= 1,674910-27 кг 1839 тe. Протоны и нейтроны называются нуклонами (от лат. nucleus — ядро). Общее число нуклонов в атомном ядре называется массовым числом А.

Атомное ядро характеризуется зарядом Ze, где Z — зарядовое число ядра, равное числу протонов в ядре и совпадающее с порядковым номером химического элемента в Периодической системе элементов Менделеева. Известные в настоящее время 107 элементов таблицы Менделеева имеют зарядовые числа ядер от Z = 1 до Z= 107.

A Ядро обозначается тем же символом, что и нейтральный атом: где Х — Z X, символ химического элемента, Z — атомный номер (число протонов в ядре), А — массовое число (число нуклонов в ядре). Сейчас протонно-нейтронная модель ядра не вызывает сомнений.

Так как атом нейтрален, то заряд ядра определяет и число электронов в атоме.

От числа же электронов зависит их распределение по состояниям в атоме, от которого, в свою очередь, зависят химические свойства атома. Следовательно, заряд ядра определяет специфику данного химического элемента, т. е. определяет число электронов в атоме, конфигурацию их электронных оболочек, величину и характер внутриатомного электрического поля.

Ядра с одинаковыми Z, но разными А (т. е. с разными числами нейтронов N=A— Z) называются изотопами, а ядра с одинаковыми А, но разными Z - изобарами.

Например, водород (Z=1) имеет три изотопа: 1 Н - протий (Z=1, N=0), 1 Н—дейтерий, (Z=1, N=1), 1 Н—тритий (Z=1, N=2), олово – десять изотопов, и т.д. В подавляющем большинстве случаев изотопы одного и того же химического элемента обладают одинаковыми химическими и почти одинаковыми физическими свойствами (исключение составляют, например, изотопы водорода), определяющимися в основном структурой электронных оболочек, которая является одинаковой для всех изотопов 10 10 данного элемента. Примером ядер-изобар могут служить ядра 4 Ве, 5 В, 6 С. В настоящее время известно более 2500 ядер, отличающихся либо Z, либо А. либо тем и другим.

Радиус ядра задается эмпирической формулой R = Ro 3 A, (24.1) - где Ro = (1,31,7)10 м. Однако при употреблении этого понятия необходимо соблюдать осторожность из-за его неоднозначности. Например, из-за размытости границы ядра, как у всякой квантовомеханической системы. Величина радиуса ядра варьируется от 2Ф до 10Ф (1Ф «ферми» = 10-15м) (рис.24.1).

Рис.24.1. Зависимость С(r) концентрации C(r) нуклонов от расстояния до центра ядра.

Ro – уровень падения С(r) в два раза.

r ro Из формулы (24.1) вытекает, что объем ядра пропорционален числу нуклонов в ядре. Следовательно, плотность ядерного вещества примерно одинакова для всех ядер (1017 кг/м3).

Размеры протонов и нейтронов примерно одинаковы и составляют около 0,8Ф, плотность их вещества ~7,51017 кг/м3, т.е., если атом почти пуст, то ядро заполнено веществом примерно на 1/3.

Дефект массы и энергия связи ядра Исследования показывают, что атомные ядра являются весьма устойчивыми образованьями. Это означает, что в ядре между нуклонами существует определенная связь.

Массу ядер очень точно можно определить с помощью масс-спектрометров — измерительных приборов, разделяющих с помощью электрических и магнитных полей пучки заряженных частиц (обычно ионов) с разными удельными зарядами Q/m. Массспектрометрические измерения показали, что масса ядра меньше, чем сумма масс составляющих его нуклонов. Но так как всякому изменению массы должно соответствовать изменение энергии, то, следовательно, при образовании ядра должна выделяться определенная энергия. Из закона сохранения энергии вытекает и обратное:

для разделения ядра на составные части необходимо затратить такое же количество энергии, которое выделяется при его образовании. Энергия, которую необходимо затратить, чтобы расщепить ядро на отдельные нуклоны, называется энергией связи ядра.

Энергия связи нуклонов в ядре составляет [ ] E св = Zm p + (A Z)m n m я с 2, (24.2) где тр, тn, тя — соответственно массы протона, нейтрона и ядра. В таблицах обычно приводятся не массы mя ядер, а массы тА атомов. Поэтому для энергии связи ядра пользуются формулой где mH - масса атома водорода. Так как mH больше тp на величину me, то первый член в квадратных скобках включает в себя массу Z электронов. Но так как масса атома тA отличается от массы ядра mя, как раз на массу Z электронов, то вычисления по формулам (24.2) и (24.3) приводят к одинаковым результатам. Величина называется дефектом массы ядра. На эту величину уменьшается масса всех нуклонов при образовании из них атомного ядра.

Часто вместо энергии связи рассматривают удельную энергию связи Есв — энергию связи, отнесенную к одному нуклону. Она характеризует устойчивость (прочность) атомных ядер, т. е. чем больше энергия связи завесит от массового числа А элемента (рис. 24.2). Для легких ядер (А 12) удельная энергия связи круто возрастает до 67 МэВ, претерпевая целый ряд скачков (например, для 1 H Есв =1,1 МэВ, для 4 He - 7,1 МэВ, для 3 Li - 5,3 МэВ), затем более медленно возрастает до максимальной величины 8,7 МэВ у элементов с А =5060, а потом постепенно уменьшается у тяжелых элементов (например, для 92 U она составляет 7,6 МэВ). Отметим для сравнения, что энергия связи валентных электронов в атомах составляет примерно 10 эВ (в 106! раз меньше).



кулоновского отталкивания. Поэтому связь между нуклонами становится менее сильной, а сами ядра менее прочными.

Наиболее устойчивыми оказываются так называемые магические ядра, у которых число протонов или число нейтронов равно одному из магических чисел:

2,8,20,28, 50, 82,126. Особенно стабильны дважды магические ядра, у которых магическими являются и число протонов, и число нейтронов (этих ядер насчитывается всего пять: 2 Не, 8 О, 20 Са, 20 Са, 82 Pb ). Термин «магические ядра» введен Марией Гепперт-Майер.

Обращает на себя внимание широкое распространение в природе атомов с магическими ядрами.

Из рис. 24.2 следует, что наиболее устойчивыми с энергетической точки зрения являются ядра средней части таблицы Менделеева. Тяжелые и легкие ядра менее устойчивы. Это означает, что энергетически выгодны следующие процессы: 1)деление тяжелых ядер на более легкие; 2) слияние легких ядер друг с другом в более тяжелые.

При обоих процессах выделяется огромное количество энергии; эти процессы в настоящее время осуществлены практически: реакции деления и термоядерные реакции.

Между составляющими ядро нуклонами действуют особые» специфические для ядра силы, значительно превышающие кулоновские силы отталкивания между протонами. Они называются ядерными силами.

С помощью экспериментальных данных по рассеянию нуклонов на ядрах, ядерным превращениям и т. д. доказано, что ядерные силы намного превышают гравитационные, электрические и магнитные взаимодействия и не сводятся к ним.

Ядерные силы относятся к классу так называемых сильных взаимодействий.

Перечислим основные свойства ядерных сил:

1) ядерные силы являются силами притяжения;

2) ядерные силы являются короткодействующими - их действие проявляется только на расстояниях примерно 10-15 м. При увеличении расстояния между нуклонами ядерные силы быстро уменьшаются до нуля, а при расстояниях, меньших их радиуса действия, оказываются примерно в 100 раз больше кулоновских сил, действующих между фотонами на том же расстоянии;

3) ядерным силам свойственна зарядовая независимость: ядерные силы, действующие между двумя протонами, или двумя нейтронами, или, наконец, между протоном и нейтроном, одинаковы по величине. Отсюда следует, что ядерные силы имеют неэлектрическую природу;

4) ядерным силам свойственно насыщение, т. е. каждый нуклон в ядре взаимодействует только с ограниченным числом ближайших к нему нуклонов.

Насыщение проявляется в том, что удельная энергия связи нуклонов в ядре (если не учитывать легкие ядра) при увеличении числа нуклонов не растет, а остается приблизительно постоянной;

5) ядерные силы зависят от взаимной ориентации спинов взаимодействующих нуклонов. Например, протон и нейтрон образуют дейтрон (ядро изотопа только при условии параллельной ориентации их спинов;

6) ядерные силы не являются центральными, т. е. действующими по линии, соединяющей центры взаимодействующих нуклонов.

Сложный характер ядерных сил и трудность точного решения уравнений движения всех нуклонов ядра (ядро с массовым числом А представляет собой систему из А тел) не позволили до настоящего времени разработать единую последовательную теорию атомного ядра. Нуклонов слишком много, чтобы применять уравнения для материальных точек, но слишком мало, чтобы появилась возможность использования представлений статистики. К тому же очень велико влияние мощных ядерных сил.

Поэтому на данной стадии прибегают к рассмотрению приближенных ядерных моделей, в которых ядро заменяется некоторой модельной системой, достаточно хорошо описывающей только определенные свойства ядра и допускающей более или менее простую математическую трактовку. Из большого числа моделей, каждая из которых обязательно использует подобранные произвольные параметры, согласующиеся с экспериментом, рассмотрим две: капельную и оболочечную.

1. Капельная модель ядра (1936; Н. Бор и Я. И. Френкель). Капельная модель ядра является первой моделью. Она основана на аналогии между поведением нуклонов в ядре и поведением молекул в капле жидкости. Так, в обоих случаях силы, действующие между составными частицами - молекулами в жидкости и нуклонами в ядре, являются короткодействующими и им свойственно насыщение. Для капли жидкости при данных внешних условиях характерна постоянная плотность ее вещества. Ядра же характеризуются практически постоянной удельной энергией связи и постоянной плотностью, не зависящей от числа нуклонов в ядре. Наконец, объем капли, так же как и объем ядра (см. (24.1)), пропорционален числу частиц. Существенное отличие ядра от капли жидкости в этой модели заключается в том, что она трактует ядро как каплю электрически заряженной несжимаемой жидкости (с плотностью, равной ядерной), подчиняющуюся законам квантовой механики. Капельная модель ядра позволила получить полуэмпирическую формулу для энергии связи нуклонов в ядре, объяснила механизм ядерных реакций и особенно реакции деления ядер. Однако эта модель не смогла, например, объяснить повышенную устойчивость ядер, содержащих магические числа протонов и нейтронов.

2. Оболочечная модель ядра (1949 – 1950). Её предложили американский физик Мария Гепперт-Майер (1906—1975) и немецкий физик X. Иенсен (1907—1973).

Оболочечная модель предполагает распределение нуклонов в ядре по дискретным энергетическим уровням (оболочкам), заполняемым нуклонами согласно принципу Паули, и связывает устойчивость ядер с заполнением этих уровней. Считается, что ядра с полностью заполненными оболочками являются наиболее устойчивыми. Такие особо устойчивые (магические) ядра действительно существуют.



Pages:     || 2 | 3 | 4 |
 



Похожие работы:

«Серия ИсторИческИе НаукИ № 1 (5)  издаeтся с 2008 года Выходит 2 раза в год Москва  2010 Scientific Journal SerieS HiStorical StudieS № 1 (5) Published since 2008 Appears Twice a Year Moscow  2010 редакцИоННый совет: Рябов В.В. ректор ГОУ ВПО МГПУ, (Председатель) доктор исторических наук, профессор Геворкян Е.Н. проректор по научной работе ГОУ ВПО МГПУ, (Зам. председателя) доктор экономических наук, профессор Атанасян С.Л. проректор по учебной работе ГОУ ВПО МГПУ, кандидат физико-математических...»

«Публичный отчет МОУ СОШ № 6 им. М.В. Ломоносова 2010-2011 учебный год. САМАРА 2011 год. 1 Содержание. I. Общая характеристика школы. II. Ресурсное обеспечение и материально- техническая база. III. Образовательные результаты и методическая работа. IV. Здоровьесбережение участников образовательного процесса. V. Финансовые ресурсы школы и их использование. 2 I. Общая характеристика школы. Муниципальное общеобразовательное учреждение средняя общеобразовательная школа № 6 им. М. В. Ломоносова с...»

«ИСПОЛНИТЕЛИ РАБОТ: ПУЧНИНА Л.В., Заместитель директора ФГБУ Государственный заповедник Пинежский по научной работе, ботаник ШАВРИНА Е.В., к.г-м. н., старший научный сотрудник, геоморфолог, гидролог РЫКОВ А.М. старший научный сотрудник, териолог РЫКОВА С.Ю., к.б.н., старший научный сотрудник, орнитолог СИВКОВ А.В., старший научный сотрудник, териолог СТАРОПОПОВ Г.А., лаборант-исследователь Пинега 2013 3 СОДЕРЖАНИЕ С. 3 РЕЗЮМЕ ( Пучнина Л.В., Рыкова С. Ю., Шаврина Е.В.) I. ПРИРОДНО-ЭКОЛОГИЧЕСКАЯ...»

«576.1 СУЩНОСТЬ БИОЛОГИЧЕСКОЙ ЭВОЛЮЦИИ Ж. В. Волъкеиштейн СОДЕРЖАНИЕ 1. Введение 429 2. Эволюционная теория в биологии 432 3. Систематика и эволюция 435 4. Направленность эволюции 440 5. История глаза 445 6. Молекулярная эволюция и нейтралистская теория 450 7. Динамика генов 457 8. Информационные аспекты эволюции 460 9. Заключение 462 Некоторые биологические термины 463 Цитированная литература 464 Это статья о биологии, написанная физиком для физиков. Ее задача — рассказать о современном...»

«НАУЧНАЯ ТЕМАТИКА КАФЕДР ФИЗИЧЕСКОГО ФАКУЛЬТЕТА МГУ Москва 2010 Научная тематика кафедр физического факультета МГУ — 2010. Издание подготовлено научным отделом физического факультета на основании материалов представленных кафедрами факультета. М.: Физический факультет МГУ, 2010, 164 с. В сборнике Научная тематика кафедр физического факультета МГУ имени М.В. Ломоносова представлена краткая информация об основных направлениях научных исследований, развиваемых на кафедрах физического факультета. В...»

«ПРОБЛЕМЫ ОПТИЧЕСКОЙ ФИЗИКИ Материалы 11-ой Международной молодежной научной школы по оптике, лазерной физике и биофизике 25–28 сентября 2007 года Саратов ИЗДАТЕЛЬСТВО Новый ветер 2008 УДК 535(068) ББК 22.343.43 Проблемы оптической физики: Материалы 11 – ой Междунар. Молодежной научн. Школы по П78 оптике, лазерной физике и биофизике. – Саратов: Изд-во Новый ветер, 2008. – 205 с.: ил В сборник вошли конспекты лекций и краткие доклады участников 11 – ой Международной молодежной научной школы по...»

«Иэн Лесли Прирожденные лжецы. Мы не можем жить без обмана Прирожденные лжецы. Мы не можем жить без обмана / И. Лесли : РИПОЛ классик; Москва; 2012 ISBN 978-5-386-04022-2 Аннотация Книга Иэна Лесли Прирожденные лжецы раскрывает нам все тайны обыкновенного обмана — той случайной или хорошо продуманной, невинной или коварной, жестокой или вполне безобидной лжи, с которой мы, сами того не подозревая, постоянно сталкиваемся в нашей повседневности. Лесли доказывает, что ложь играет весьма важную роль...»

«ПРОГРАММА МЕЖДУНАРОДНОЙ КОНФЕРЕНЦИИ “Фазовые переходы, критические и нелинейные явления в конденсированных средах” 21-23 ноября 2010 г. Конференция проводится при поддержке Российской академии наук и Российского фонда фундаментальных исследований Посвящается 75-летию член-корреспондента РАН Ибрагимхана Камиловича Камилова Махачкала 2010 ОРГКОМИТЕТ МЕЖДУНАРОДНОЙ КОНФЕРЕНЦИИ Фазовые переходы, критические и нелинейные явления в конденсированных средах Сопредседатели: академик РАН К.С. Александров...»

«Редакционный совет книги выражают искреннюю благодарность за ценную помощь в подготовке и издании книги: Линик Людмиле Ниловне, Ершову Михаилу Аркадьевичу, Стороненко Майе Геннадьевне, Федяниной Ирине Анатольевне, Ильину Евгению Васильевичу, Науменко Ольге Васильевне, а также руководству и сотрудникам компаний и общественных организаций, при участии и поддержке которых было выпущено данное издание: Mobility Working Group of The European Council of Doctoral Candidates and Junior Researchers, ООО...»






 
© 2013 www.knigi.konflib.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.